Addressing Dynamic Issues of Program Model
Checking

Flavio Lerda and Willem Visser

RIACS/NASA M/S 269-2
Ames Research Center
Moffett Field, CA 94035-1000
USA

{flerda, wvisser}@riacs.edu

Abstract. Model checking real programs has recently become an active
research area. Programs however exhibit two characteristics that make
model checking difficult: the complexity of their state and the dynamic
nature of many programs. Here we address both these issues within the
context of the Java PathFinder (JPF) model checker. Firstly, we will
show how the state of a Java program can be encoded efficiently and
how this encoding can be exploited to improve model checking. Next we
show how to use symmetry reductions to alleviate some of the problems
introduced by the dynamic nature of Java programs. Lastly, we show
how distributed model checking of a dynamic program can be achieved,
and furthermore, how dynamic partitions of the state space can improve
model checking. We support all our findings with results from applying
these techniques within the JPF model checker.

1 Introduction

Software is playing an increasingly important role in our everyday lives, but
sadly, so does software failure. At NASA this point was made painfully clear in
1999 when the Mars Polar Lander was lost due to a software related problem
(estimated cost was $165 million) [Spa00]. Although most agree that many soft-
ware failures can, and must, be caught during the design phase, it is however
often the case that a design phase is either missing by itself, or the tools and
techniques to analyze the designs are missing. Hence, testing an implementa-
tion is still the number one way of finding errors in software systems. Testing,
however, can be very expensive, but more importantly, it is often incapable of
finding subtle errors - e.g. timing errors in a concurrent system.

Model checking has been used extensively to find subtle errors in hardware
and protocol designs [BLPV95,CW96,Hol91]. However, until recently, model
checking has been deemed inadequate to analyze software code, due to the high
level of detail often found in code. Now there are many groups, from both indus-
try and academia, that are analyzing source code by model checking. Many of
these source code model checkers are based on a translation from source code to
the input notation of a model checker: Bandera [CDH'00], Java PathFinder 1

[HP98], JCAT [DIS99] are Java model checkers, and, AX [Hol00] and SLAM
[BROO] are C model checkers. A drawback of the translation approach is that
certain language constructs are difficult to translate and hence two of these
tools, JCAT (dSPIN [IS99]) and AX have extended their back-end model checker
(SPIN in both cases [Hol97a]) to improve efficiency.

We adopted a different approach by creating a custom-made model checker
for Java. We call this tool Java PathFinder 2, henceforth referred to as JPF. JPF
is an explicit state model checker that takes as input Java bytecode. It is struc-
tured as a search algorithm that uses a special Java virtual machine (JV M7FF)
to execute the bytecode instructions one at a time. In order to implement a
depth first algorithm the JV M7/PFneeds also to have a backtracking capability.
The tool itself is written is Java and it’s executed by the Java virtual machine
(just JVM from now on). By executing the bytecode we can not only analyze all
of Java, but we can also analyze programs without source code (e.g. libraries and
code down-loaded over the web), and other languages for which bytecode trans-
lations exist [BKR98,Taf96,CD98]. Recently JPF has been integrated with the
Bandera system [CDH'00]: in this case Bandera doesn’t need to do any transla-
tion because our tool is able to handle Java directly, but Bandera’s functionality
of slicing and abstraction are available to improve the model checking.

If one looks at the history of model checking input notations, then it is clear
that there has been an evolution from simple guarded command style notations,
to ones where more complex data-structures are used. We believe this trend will
continue and soon complex dynamic data-structures as well as other features
from typical programming languages will be common place. The purpose of this
paper will be to highlight some of the difficulties and possible solutions we have
encountered in developing an efficient model checker that can handle dynamically
evolving software systems. We hope this will help others when developing similar
systems.

Although it is clear that static analysis of a system before model checking
can greatly benefit the verification, e.g. slicing a system with respect to a certain
property to be checked, or finding independent statements to allow partial-order
reductions, here we will focus mostly on purely dynamic optimizations for which
no prior information is required. The interested reader is referred to [VHBPOO]
where we discuss static analysis for partial-order reductions and other techniques,
such as abstraction, that JPF employs before doing model checking.

Model checking software is often considered hard due to the complexity
of the state of the system (this is the premise of state-less model checking
[God97,5t000]). We address this problem in section 2, by first showing how
a “large” state can be collapsed to a smaller one, how this can be exploited
to improve explicit-state model checking, how a novel form of symmetry reduc-
tions on the state can reduce the size of the state space, and lastly, how garbage
collection improves model checking. The state-space explosion problem can be
reduced, but it almost never goes away. Hence, the more memory one has the
larger the programs that can be checked. In section 3 we extend the distributed
model checking algorithm first used for SPIN [LS99], that exploits the memory

of a number of workstations, to work in the dynamic context of Java. Section 4
contains conclusions and directions for future work.

2 Complexity of the State

One of the first issues we had to address was the complexity of the state. A
limitation of the current model checking tools is that they cannot handle dy-
namic structures. In fact dSPIN [IS99], an extension of the model checking SPIN
[Hol97a] used as a back-end in the Java model checker tool JCAT [DIS99), in-
troduces direct support for dynamic allocation.

2.1 The Representation of the State

In creating our own model checker, we were free to choose the representation
of the state. Our aim was to be able to handle dynamic allocation efficiently
and maintain our representation as close as possible to the one suggested by the
programming language. The state is composed of three main components:

static area : is an array of entries, one for each class loaded. Each entry con-
tains the values of the static fields of the class and the monitor associated
with it. The monitor contains information on the lock for the class: which
thread is holding the lock, which threads are waiting for the lock etc. When
a new class needs to be loaded a new entry in the static area is created
and its fields and monitor are initialized. Once loaded a class will never be
unloaded during the execution of an instruction — but it can be unloaded by
a backtracking step.

dynamic area : is an array of entries, one for each object. Each entry contains
the values of the fields and the monitor! associated with it. Objects are cre-
ated explicitly by specific bytecode instructions. When an object is created
an entry is added in the dynamic area and its fields and monitor are initial-
ized. Objects are not destroyed explicitly in Java, but they can be removed
if not referenced anymore (see Section 2.5).

thread list : is a list containing the information relative to each thread. It
contains the status of the thread together with other information used by
the scheduler, and the stack frames created by the method calls. A new
entry is created when a new thread is created, and modified each time the
execution of a bytecode instruction changes the state of the thread or one of
its stack frames.

These three components are dynamic and they can grow and shrink freely
during the execution of the program, not imposing any limit on the size of the
state. This is a novel feature, since in both SPIN, where process are allocated
dynamically, and dSPIN, where also data can be allocated dynamically, there is
still a limit imposed on the size of each state.

! The fields and monitor structures are the same used in the static area.

2.2 Collapsing the State

The dynamic features of the Java language, namely, class loading, object cre-
ation and method invocation, require a complex data-structure to record the
state of the system (see for example our state structure in the previous section).
Furthermore, in order to do efficient explicit-state model checking one needs to
record the states that have been visited (often using a hash-table). From the
examples? in Table 1 one can clearly see that it is very inefficient to store the
states in their original complex form: for both relatively simple Java programs
more than 2kB/state are required. Unlike in a tool such as SPIN where state
compression is an option, it is clear that for systems that require a more complex
state description, compression should be a requirement.

The “collapse” algorithm has been very successful for state compression in
SPIN [Hol97b] and hence we decided to extend it for use within JPF. The ratio-
nale behind the collapse method is that when a new state is generated large parts
of the state are unchanged. This would seem to call for the state to be stored
as the difference from the predecessor, but since states need to be compared to
determine if a state has been visited before, this would be inefficient. What the
collapse does is to associate to a particular part of the state an index. The state
can then be collapsed to a list of indexes indicating which components compose
the state itself. The decomposition must be unique so that by comparing the
indexes it is possible to determine state equality.

In order to generate the indexes we created a set of pools. Each pool is an
ordered set without repetitions. Every time a state needs to be stored it is first
collapsed: each component is inserted into a pool, the pool returns the index
that corresponds to the position of that component in the pool. If the element
was not present in the pool it is added at the end, otherwise the index of the
copy already present in the pool is returned. The assumption is that the size
of the pool is small enough because each single component appears the same in
many states.

In SPIN there are pools for the following state components: global variables,
processes and asynchronous channels. Asynchronous channels has no counterpart
in Java, but one can think of global variables and static fields, and SPIN processes
and JAVA threads to be similar. This would seem to imply that a good first try
for our state compression should include a pool for the static area, the dynamic
area and the threads. This, however, would be inefficient, since each of these
three components has further structure that can be exploited. For example, an
assignment to a field of an object would make the dynamic area and one thread
change, and hence create two large new pool entries. If we rather use a pool for
each stack frame in each thread, one for each monitor and one for each fields data
entry then the above field assignment would only change one stack frame entry
(the one for the method with the assignment, while leaving all other frames in
the thread to collapse to their old values) and one fields entry. When deciding on
which components to compress one should always pick components that would

? The examples used in this and the following tables are available from the JPF web-
page http://ase.arc.nasa.gov/jpf

not change too often, in order to get maximum benefit. We therefore choose a
pool for each of the following: fields data (from both the static and dynamic
area), monitor data (again shared between static and dynamic area), method
stack frames and lastly one for other thread information (such as the thread
status, that seldom changes).

As can be seen in Table 1, when the compression algorithm is used the
number of different elements in the pools is quite small and the reduction of the
memory requirements is impressive. Note that the execution time is reduced as
well. When a new state is stored it is compared to other states to see if it has
already been visited. This operation is highly inefficient when two uncompressed
states are compared because of the complexity of the states themselves, but
it is quite efficient when the compressed states (namely arrays of integers) are
compared.

States |[Transitions|Pools Entries

RemoteAgent 66,425 148,825 1,373
Memory Time State Size
(MB) (sec) (bytes)
No Compression 180.79 227.83 2854
Collapse 12.08 138.65 191
Optimized Backtrack| 12.08 54.39 191
States |Transitions|Pools Entries
BoundedBuffer 105682 275988 583
Memory Time State Size
(MB) (sec) (bytes)
No Compression 504.82 665.90 5009
Collapse 28.17 297.40 445
Optimized Backtrack| 28.16 76.82 445

Table 1. Comparison of JPF using no compression, collapse, and optimized backtrack

2.3 Optimizing the Backtrack

Although compression made JPF usable, it was clearly still too slow and used
too much memory at run-time to handle large examples. Profiling the system
revealed that the problem was the way we handled backtracking. Unlike SPIN
we decided to store a copy of each state on the depth-first stack for backtracking
purposes — SPIN uses a backwards transition to unwind moves when backtrack-
ing, and only if the state change is too large a copy of the previous state is used.
The reason for this is that we work on the bytecode level and often one Java

statement? can correspond to many bytecode instructions, hence unwinding each
bytecode instruction seemed too complicated. The graph in Figure 1 shows how
the memory usage before optimizing the backtracking varies during the visit as
new states are reached. In the same graph (with a different scale) the depth of
the stack is shown. It is evident how the memory usage is strictly related to the
depth of the stack because the uncompressed state is stored on the stack.

3.5e+07 T T T T T T

Memory Usage Before ——

Memory Usage After ----

Stack bepth -----
3e+07 |- b
2.5e+07 B
2e+07 | q
1.5e+07 |- B
evo7 [\ N T 1
se06 || 7 N 1

0 dl L 1 L L 1 L N
0 10000 20000 30000 40000 50000 60000 70000

Fig. 1. Memory usage in bytes during execution with and without optimized back-
tracking. Stack depth is also represented in a different scale

A very simple, and above all novel solution presented itself: store the com-
pressed state on the stack and use the reverse of the collapse operation to re-
create the original state when backtracking. In fact, only store a reference to
the compressed state on the stack and leave the state itself in the hash-table.
Reconstructing the state is quite straight-forward because the collapsed infor-
mation contains the indexes of the different components of the state that just
need to be put back together again via a reverse lookup in the pools (i.e. the
original component corresponding to an index must be retrieved). For efficiency
only the components that are actually changed are restored. Figure 1 also shows
the memory usage after introducing the optimization of the backtrack. A slight
dependency between memory used and stack depth is still present, but now most

3 Although JPF executes bytecode instructions, we typically don’t use that level of
atomicity during model checking, rather we use one JAVA statement or one line of
JAVA code as being one transition.

of the memory is used to store the states. It is interesting to see that the memory
usage before and after the optimization intersect where the stack depth comes
down to zero — or very close to it.

Table 1 contains the results obtained using this more optimized backtracking
technique. It is not evident how the memory usage is optimized (see Figure 1)
because the same amount of memory is used when the search is finished. But
the execution time is considerably reduced, because it is not necessary to put a
copy of the state on the stack anymore.

2.4 Exploiting Symmetries

Symmetries have been used in model checking to reduce the size of the state
space [EJ93,ID96,CEJS98,CFJ93,BDHO00]. The basic idea is to visit a subset of
the state space that is representative of the whole state space based on a sym-
metry relation that does not influence the properties being checked. Typically
symmetry reductions exploit the structure of the system being analyzed, e.g.
identical processes, scalar sets etc. [BDH00,ID96]. In keeping with the focus of
the paper we exploit symmetries that will be inherent to dynamic systems, and
hence we address symmetry issues on the underlying state representation rather
than symmetry within the state itself.

class A { class Main extends Thread {
public static int value public static void

} main(String[] args) {
new Main(true).start();
new Main(false).start();

}

public int x;

private boolean a;

n
o

class B {

public static int value = 1; public Main(boolean a) {
¥ this.a = a;
}
public void run() {
if(a) {
Symmetry|States|Transitions x = A.value;
no 82 152 } else {
yes 70 132 x = B.value;
11}

Fig. 2. Static area symmetry reduction

Specifically we want to exploit the symmetry when classes are loaded into
the static area and when objects are created in the dynamic area. Recall from
section 2.1 that both the static and dynamic area are implemented as arrays, but

the exact position of a class or object in these arrays should not be relevant when
comparing states. Nondeterminism, either from concurrency or the environment,
can cause classes to be loaded or objects to be created in different orders along
different execution paths.

Comparing all possible permutations of the array entries when comparing
states is however computationally very expensive, and hence we decided to rather
use a canonization function to achieve efficient symmetry reductions. The idea
is the following: whenever a state is generated we calculate a canonical repre-
sentation of the state and use this representation for state comparisons. The
use of a canonization function is a well-known technique for achieving symmetry
reductions [BDH00,ID96], but calculating this function can be very expensive
[CEJS98] in itself. However, since we are only interested in a limited form of
symmetry reduction, we can calculate the canonical state representation very
efficiently by imposing an order on the entries in the static and dynamic areas.
Due to the dynamic nature of Java programs, this ordering must be calculated
during model checking. Also, since we use the position of classes and objects as
references, an ordering that would require positions to change would be ineffi-
cient. The idea is to dynamically map each class (object) to a position in the
static (dynamic) array when the class (object) is first loaded (created). When
backtracking, this mapping is preserved, and reused when executing down a
different path.

Figure 2 shows a piece of code where two classes — A and B — are loaded
when one of their static fields is accessed. Two threads are executing each one
accessing a different class. Depending on the scheduling class A can be loaded
before class B or vice-versa. Without symmetry reduction, if classes are allocated
in the static area in the order they are loaded, the two interleavings above would
lead to two different states, one where A occupies the position before B and the
other where B is in front of A. With symmetry reduction we keep a mapping of
class names to positions with respect to which class got loaded first, and hence
we see a reduction in the number of states (see table in Figure 2). Note that for
classes we could have chosen an alphabetical ordering, but this would violate the
condition that positions must not change due to the ordering.

Since class names are unique this simple mapping of names to positions is
sufficient to achieve a canonical representation for the static area. The dynamic
area is not quite as straight-forward, since objects do not have names and hence
the different objects created cannot be so easily identified. Our first guess was
to use the bytecode instruction that created the object to identify it: this works
fine (see results in Figure 3) as long as each instruction is executed at most once
during each execution path. However allocation instructions can be executed
more than once and create more than one object (e.g. an allocation within a
loop). To deal with that we added to the identifier of an object the occurrences
of the instruction, i.e. the number of times that instruction has been executed
before. Note that this occurrence number is incremented for an allocation, and
also decremented whenever the allocation is backtracked.

class ThreadOne extends Thread { class ThreadTwo extends Thread {
public Object o; public Object o;
public void run() { public void run() {
o = new Object(); o = new Object();
}} }}
class Main { Symmetry|States|Transitions
public static void no 54 89
main(String[] args) { yes 30 51

new ThreadOne().start();
new ThreadTwo().start();

3

Fig. 3. Dynamic area symmetry reduction

This is sufficient to identify an object, but it might not lead to the most
efficient symmetry reduction results. In Figure 4 the same bytecode instruction
is executed by two different threads. The number of occurrences with which
each thread executes the instruction depends on the interleaving and therefore
so does the position of the object in the dynamic area. One way to address
this problem is to add to the identifier of an object the thread that created the
objects and count the number of occurrences of the same instruction in each
thread separately (see last row in the table in Figure 4).

The same basic approach has been applied to the static and dynamic ar-
eas. For the dynamic area — since there is no unique identifier for an object
other then the position in the dynamic area itself — it is necessary to use some
other information (the bytecode instruction that created the object, the number
of occurrences that instruction had before, the thread that created the object)
in order to create a dynamic ordering. Although we showed results on small
examples in this section, the difference symmetry reductions can make on more
realistic examples is quite good: e.g. without symmetry reductions the Bounded-
Buffer example from Table 1 has 2502761 states and only 105682 with symmetry
reduction (i.e. a 25 fold reduction). Furthermore, the time overhead is almost
non-existent: when applying symmetry reduction to an example that have no
such reductions we see a 1% increase in the execution time.

The symmetry reduction presented in this paper is orthogonal to other kind
of symmetries based on the structure of the system, and therefore they could
be used together. Note, that unlike [ID96,BDHO00] we don’t require an exten-
sion of the model checker input language in order to achieve efficient symmetry
reductions. Lastly, some of the symmetries that are exploited here are due to dif-
ferent interleavings of some thread execution. Partial order reduction techniques
avoid exploring some of those interleavings, and therefore it can mitigate the
effect of our symmetry reduction. However our method can reduce symmetries

class ThreadOne extends Thread { class ThreadTwo extends Thread {
public Object o; public Object o;
public void run() { public void run() {
o = Main.newObject(); o = Main.newObject();
}} }}
class Main { Symmetry|States|Transitions
public static void no 122 237
main(String[] args) { yes 86 168
new ThreadOne().start(); thread 68 135
new ThreadTwo().start();
}
public static Object newObject() {
return new Object();
} 2

Fig. 4. One instruction can be called by different threads

that cannot be avoided by partial order reductions, but more importantly, can
be applied without requiring expensive static analysis to determine transition
independence.

2.5 Garbage Collection

Java does not offer any primitive to deallocate an object. Once created an object
will continue to exist until it is garbage collected. An object can be garbage
collected when no more references to it are available.

public class Main {
public static void main(String[]l args) {
Object o;
while(true) {
o = new Object();

}1}

Fig. 5. Even a simple example can have infinite states

If we want to model check software written in Java we need to take into
account garbage collection. Many Java programs rely on its presence, and even
very simple examples — see Figure 5 — would have an infinite number of states
without garbage collection (each allocation increases the size of the state, hence
causing an infinite state-space). Garbage collection during model checking was

first introduced in [IS00] and we implemented the same two algorithms, namely
reference counting and mark and sweep, in JPF. The results presented in Table 2
show how reference counting and mark and sweep perform in our implementa-
tion. Three examples are analyzed:

— TempObj creates many temporary objects;

— NoGarbage adds elements to a list but never removes them, creating no
objects to be collected; and

— DoubleLinked creates a double linked list and then loses the only pointer
to it.

All these examples include concurrency (two or more threads are executing
the same operations concurrently). In the table the following have been reported:
the number of states, the number of transitions, the memory usage (at the end of
the verification), the execution time, and the number of objects collected (with
the number of times the algorithm has been activated for mark and sweep).

Memory|Time GC
TempObj |(States|Transitions| (MB) | (sec) |objects(runs)

no GC 609173 1276971 168.26 |508.24 -(-)
Mark and Sweep| 2923 7110 1.1 5.73 | 2750(4286)
Reference Count| 2923 7110 1.1 6.48 2750(-)

Memory|Time GC
NoGarbage |States|Transitions| (MB) | (sec) |objects(runs)
no GC 833766 1812626 216.88 |520.26 -(-)
Mark and Sweep|833766| 1812626 216.95 |646.43| 0(1241203)
Reference Count|833766| 1812626 216.95 (621.90 0(-)

Memory|Time GC
DoubleLinked |States|Transitions| (MB) | (sec) | objects(runs)
no GC 124503| 310006 71.31 |99.18 -(-)
Mark and Sweep|124503| 310006 33.45 |101.98/35928(231163)
Reference Count|124503| 310006 71.37 |120.01 0(-) |

Table 2. Results obtained with GC

The first example — TempObj — is heavily affected by garbage collection.
The fact that temporary objects are created — which is quite common in Java —
adds extra information to the state that makes equivalent states seem different
if garbage collection is not active. The memory requirement are the same for
both algorithms, but mark and sweep is slightly faster, since the ratio of objects
collected per run is quite high (this is not the case for the other two examples).

The second example — NoGarbage — shows the overhead introduced by the
two algorithms, since this example does not produce any object to be collected.

The extra memory is about the same for both algorithms, but that’s not true for
the execution time. The mark and sweet algorithm is activated many times and
that is reflected in the higher execution time: almost 70% of the transitions cause
the algorithm to be executed. The algorithm is activated only after an instruction
that can produce garbage: unfortunately many of the bytecode instructions can.

The last example — DoubleLinked — leads to two considerations. First, the
reference count algorithm is not able to detect cycles of garbage. As a conse-
quence no garbage is detected by this algorithm. Secondly, even when garbage
is found with the mark and sweep algorithm, the state space is not reduced:
the reason is that states with their garbage removed are still different because
of other variables in the program. However, there is a reduction in the memory
since states from which garbage was collected are now smaller.

Note, unlike the case for dSPIN[IS00], where it was necessary to store the
complete state on the stack before garbage collection — because the state was
changed in an irreversible way — we do not need to do so because the collapsed
version of the state is already stored on the stack.

3 Distributed Memory

Explicit state model checking suffers from the state explosion problem, and when
analyzing software programs this problem is more severe due to the higher-level
of detail present in such programs. In order to deal with this issue, many dif-
ferent solutions have been tried, distributed model checking being one of them
[LS99,SD97]. In this section we present how we improved this technique and
adapted it to the dynamic nature of the systems that can be checked with our
tool. Our work is based on [LS99], that presents a distributed memory implemen-
tation of SPIN. Our goal was to analyze the issues of implementing a distributed
model checker when the input model is a dynamic system, in order to guide us
in the development of a parallel model checker.

The algorithm presented in [LS99] extends the standard depth-first visit al-
gorithm into a distributed visit algorithm. This new algorithm is no longer depth
first but it still visits all the states and paths of the system. The only real is-
sue with this algorithm is that it does not allow LTL model-checking, but this
limitation had been overcome in [BBS00].

The basic idea is to divide the state space in partitions. Each node — work-
station — will store the states that belong to one of the partitions. Every time
a new state is reached a partition function is used to determine which node is
the owner of the state and the state is sent there for storage and analysis of
the state’s successors. If the state has to be visited in the same node then the
visit continues depth first from that node. The node the starting state belongs
to will start the visit while the others are waiting for incoming messages. The
search is completed when all nodes are waiting and all messages sent have been
received. The major issue with this algorithm is picking a partition function that
minimizes the memory required by each node, but at the same time limits the
number of messages required between the nodes.

3.1 Improvements

The algorithm from [LS99] has been adapted to our system, at first without any
modification. After making the tool operational we worked on some extensions,
mainly aiming to reduce the communication overhead. In [LS99] a modification
of the algorithm, called sibling storing, is presented, which reduces the number
of messages sent. Each time a new state that needs to be sent to another node
— sibling — is reached, a local copy of the state sent is kept in the local hash
table. If encountered again, no messages need to be sent, since we know that
it has been received by that node before. One issue with this technique is that
the number of siblings can grow quickly and consume too much of the memory,
taking space that could be allocated to store actual (local) states.

We developed a modified version of this technique, that we called sibling
caching, that stores the siblings in a cache. When no empty space is left in the
cache, the least recently used element is discarded and the new sibling is added.
This technique proved to be quite effective — see Table 3 — because a very limited
size cache performs, in terms of messages avoided, almost as good as complete
sibling storing. Table 3 shows the traditional partition algorithm (that uses a
hash function over the complete system state for partitioning) augmented with a
number of optimizations techniques and compares these with respect to memory
usage, percentage of transitions that generates messages, and lastly the time
taken.

RemoteAgent Memory MB|Messages %|Time (sec)
Normal Distributed 40.69 38 525.16
Sibling Storing 45.70 27 504.65
Sibling Caching (50) 40.10 34 518.52
Sibling Caching (200) 39.60 31 515.26
Sibling Caching (500) 39.19 28 511.77
Children Lookahead 29.67 31 320.75
Children Lookahead + Sibling Storing 33.83 23 296.87
Children Lookahead + Sibling Caching (50) 29.19 28 316.11
Children Lookahead + Sibling Caching (200) 29.14 28 314.61
Children Lookahead + Sibling Caching (500) 28.86 26 319.06

Table 3. Results using different optimizations with the RemoteAgent example

Another extension we developed is called children lookahead. This technique
tries to avoid sending messages due to short paths that fall into another node’s
state-space. As can be seen in Figure 6, state 350_)1 is followed by state sgl). This
generates a message from node 0 to node 1. When node 1 receives the new state
it generates its successor sggr)l, This node needs to be stored by node 0 and so
a second message is generated. This last message could have been avoided if

node 0 had checked the successors of sgl) for any state belonging to itself — this

operation being not very expensive because state sgl) has already been generated
by node 0.

Node 0 © Node 1
i-1
1) ()]
X S i S i
N
generates |
dithe !
successor :
) ©
@Siﬂ - \\Si+l
L
avoided|message o

Fig. 6. Example of children lookahead

In order for this technique to work it is necessary to clearly specify who is
going to take care of each state. When a message is sent the sender will check
for its own states among the successors of the sent state. On the other hand
the receiver will skip every state belonging to the sender that falls in the first
generation starting from the received state. This algorithm works also if there
are more than two parties involved, because the sender will just ignore states
belonging to a third party, while the receiver will send the state to the correct
node — therefore avoiding duplication. It is important however for the node to
check for possible states belonging to itself in the first generation of the state
sent to the third node.

This technique avoids messages for runs that last only one state in another
node’s part of the state space, but the technique can be generalized to an arbi-
trary number of steps, corresponding to the number of generations that need to
be checked. There exists a trade off between the number of generations checked —
and therefore the number of possible messages avoided — and the time overhead
necessary to generate all the successors — which grows exponentially with respect
to the number of generations.

Some results can be seen in Table 3 where the same example has been ex-
ecuted with different combinations of the presented techniques: sibling storing
reduces the number of messages more consistently than sibling caching, but in-
creasing the size of the cache — 50, 200, and 500 in the table — the percentage of
messages gets closer to the results obtained using storing. Children lookahead ap-

pers to be very effective and is orthogonal to the other techniques. The results in
terms of message reduction are mirrored by the reduction in execution time. The
memory usage should be higher with sibling storing, decrease with the caching
and be minimum without any sibling algorithm. Nevertheless the experimental
results give an anomalous behavior that we were not able to explain.

State Transfer A difference between SPIN and JPF is where most of the
execution time is spent: in SPIN storing the state uses most of the time, while
in JPF execution of the bytecode instructions is the most expensive operation.
This is due, in part, to the fact that in JPF transitions are more complex than
in SPIN. This difference can affect the design of the distributed version of the
two tools. In [LS99] the communication protocol between the nodes had been
designed so that a path is sent to identify the state that needs to be visited. This
is consistent with the assumption that steps can be executed very efficiently in
SPIN. On the other hand, in JPF an execution step is very time consuming
so it would sound efficient to send the state, without any need for the path.
In JPF however the state is a very complex structure that includes references.
At the early stages of the development we tried to send states, but the time
necessary to translate the states into something that can be sent on a socket was
too high. Therefore our choice was to send the path and use that information to
reconstruct the state on the destination node. Although we are sending a path
at the moment we believe that when doing the implementation on a parallel
architecture sending states would become viable.

Another possibility that we are currently exploring is to send across a com-
pressed version of the state. Since the state is very efficiently compressed by
the tool for storing, it would be effective to send the compressed state over the
network. This is not at the moment possible because the pools used for the
compression are local to each node and therefore it would be impossible to cor-
rectly reconstruct the state on the receiving node. One possible approach — that
is particularly interesting in a parallel environment, but it’s still applicable in
a distributed one — would be to centralize the pools used for the compression.
This way indexes for components of the state would be global and the com-
pressed state could be easily and quickly transferred between nodes. In order
to reduce the communication each node could keep a copy of the entries that it
accessed from the centralized pool and only when a new entry has to be added,
communication is necessary.

3.2 Partitioning

Partitioning is a crucial point in the distributed algorithm [LS99]. Partitioning
aims to achieve two contrasting goals, with an obvious trade off:

— reduce the number of message that need to be transmitted; and
— maintain a fair partitioning of the memory required on each node.

In [LS99] a few heuristics to determine a partition function are suggested.
In [Ler00] a more complete approach to the problem is given, and a tool to
automatically generate a partition function from static analysis of the input
model is presented. However, because of the dynamic nature of the systems we
address, these kind of tools are more difficult to implement due to the complexity
of the static analysis required. We will therefore focus on partition functions that
can be calculated dynamically and compare them to static partitioning functions
that do not require any static analysis. In [Ler00] partition functions are classified
as:

static: the partitioning is made before the verification is run and no changes
are possible once at run-time; or

dynamic: the partition function is adapted at run-time using the information
gathered during execution to better suit the system that is being model
checked.

These two kinds of partition functions have their advantages and disadvan-
tages: static partitioning does not require further communication to determine
which node a state belongs to but it is hard to come up with a good func-
tion, i.e. one that achieves both equal partitions and low communication. On
the other hand, dynamic partitioning requires a higher level of communication
and complexity, but allows more versatility (it is not model dependent) and
equal partition size. All the partition functions used in [LS99] are static but the
algorithm presented does not rely on that assumption. Static partitioning is espe-
cially problematic for a dynamic system, because it is hard to extrapolate what
the behavior and structure of the system will be. Therefore a dynamic approach,
since it is not dependent on the system structure, seems more appropriate when
analyzing dynamic systems.

3.3 Static Partitioning

First we present some examples using static partitioning — Table 4 — that can be
used as a reference for the results presented further on. They are also important
because — as we will see in Section 3.4 — these partition functions are used as a
basis for the dynamic ones.

The results in the table are for the RemoteAgent example using two worksta-
tions. The different partition functions are reported in the first column, followed
by the percentage of the total memory used by each workstation, the percentage
of transitions that cause messages to be sent, and lastly the time taken.

The Global Hash Code partition function uses a hash function to determine
the partition: the function is applied to the whole state and the partition is the
result modulo the number of partitions. This solution gives a fair division of the
state space between the nodes, but at the same time, the number of messages
generated is pretty high.

A possible approach is to use the locality principle [LS99]: if the partition
function relies only on the information of a particular thread, only when that

RemoteAgent Memory %|Messages %|Time (sec)
Global Hash Code 50/50 38 525.16
Local Hash Code 50/50 46 551.28
Local Hash Code (1) 44/56 11 241.46
Local Hash Code (2) 47/53 13 263.57
Program Counter (1) 54/46 17 342.34
Program Counter (2) 48/52 25 487.43
Program Counters (1)| 54/46 17 339.46
Program Counters (2)| 43/57 14 326.66

Table 4. Different static partition functions on the RemoteAgent example

thread is scheduled is it possible to reach a state that generates a message. As a
first step we created a partition function — Local Hash Code — that applies the
hash function to the thread list only. This implies that the value of the objects are
not included in the hashing process — only the stack frames and thread status
of all threads. As a further step we limited this process to a specific thread
(indicated by a number in the table). The results, in terms of message ratio, are
still not very good for the function if applied to the whole thread list because at
each step at least one of the program counters will change, but if applied to a
single thread, messages are reduced. The choice of the thread is also important:
the first thread — zero — is usually a bad choice (hence it was not included in
the table), since it is the main thread that often is simply used to create the
threads that compose the real system. In general a reduction of the messages is
obtained, with a sacrifice in the fairness of the partition.

As said before, in [Ler00] a tool to generate a partition function using static
analysis has been presented. Unfortunately, this tool cannot be applied, as is,
here because it uses the flow control graph of a thread, that is not as accessible as
in SPIN. The idea behind it is to use the current state of a process to determine
the partition the state belongs to: on a similar path we tried to use the program
counter of threads to do this. Since the static analysis approach cannot be used,
we just hashed the program counter. At first sight the program counter seems to
be the equivalent of the current state of a Promela process, but because of the
stack based approach, each thread has more than one program counter. At first
we tried to use the program counter from the topmost stack frame (rows saying
Program Counter as partition function), then we tried the same approach using
a function of all the program counters from every stack frame (rows marked
as Program Counters). The result is a reduction of the percentage of messages,
which is higher when the function is applied to a specific thread. Note again,
that the main thread (thread zero) is not shown, since as before it is only used to
start the rest of the system and hence leads to a very unbalanced partitioning.

An interesting observation is that one can either use too much information
to calculate the partitioning, in which case the partition is fair but creates too
many messages (see Global Hash Code and Local Hash Code) or one can use too
little information (see Program Counter 1 and 2) with similar problems. Using

just enough information seemed to give the best results: Local Hash Code for a
thread and Program Counters per thread.

3.4 Dynamic Partitioning

The great advantage of dynamic partitioning is that no prior knowledge or static
analysis of the system are necessary: run-time information is used to keep the
partitioning fair. Dynamic partitioning just means that states can be stored in
one node at a certain moment and in another one later on. In general a dynamic
partition function will initially assign a subset of the state space to each node
and when a certain condition arises — for instance lack of main memory — it will
reassign some states to a different node.

In our work we assume that at any given time each node knows where each
state is supposed to be stored. This means that a node does not need to interro-
gate every other node to know if a state has already been visited, but can send it
to the legitimate owner. This assumption can be dropped a for limited time after
a reassignment with the condition that nodes relay the incoming states that do
not belong — anymore — to them to the correct designated node.

One issue that arises at this point is how to represent a partition function that
can change with time. It is necessary for some sort of table to specify which state
is stored where. It is obvious that the granularity of this table cannot be the single
state, otherwise the size of the table would be of the same order of magnitude
of the size of the whole state space. States can be grouped together: we called
these groups of states classes. It is clear that the classification is equivalent to the
partitioning. The assumption we made here is that the same techniques used for
determining static partition functions can be used to determine a classification
function. What is important is that classes do not need to be the exact same size.
In fact the number of classes is greater then the number of partitions, and each
partition consists of a set of classes: at run-time classes will be grouped together
into partitions and when a partition’s size is too big, part of it — a class — can be
assigned to another node. Still important is to minimize the number of potential
messages between two classes, but we do not have a strong trade off like we used
to. This solves the problem of having an excellent partition function, since an
average classification function can give optimal results.

When a reassignment is issued the states that have already been visited but
now belong to a different partition have to be discarded. It is not efficient —
at least in a distributed environment — to transfer that information across the
network. The node those states are assigned to will rediscover those states —
if they will ever be met again — without actually influencing the result of the
computation, just extending the search — since some states may be visited more
than once.

Table 5 show the results obtained using different dynamic partition functions
based on the static ones presented in the previous section. Half of the classes
are initially assigned to each node and, if necessary, they will be reassigned.
When comparing these results with the static partition results from Table 4 it is

RemoteAgent Memory %|Messages %|Time (sec)
Global Hash Code 50/50 38 524.02
Local Hash Code 50/50 46 531.17
Local Hash Code (1) 48/53 11 216.56
Local Hash Code (2) 48/52 13 281.25
Program Counter (1) 52/48 17 340.97
Program Counter (2) 48/52 25 487.46
Program Counters (1)| 52/48 17 311.22
Program Counters (2)| 49/51 13 333.78

Table 5. Results from dynamic partition with classes split equally.

clear that in every case the dynamic partition achieves either a similar or better
memory distribution and runtime.

An important issue is to decide when a reassignment is necessary: an option
would be to start it when the number of states stored in one partition is too
big compared to what is currently stored in the others. However this is not a
good idea, since having a greater amount of states stored in one partition is not
necessarily a problem until memory comes to exhaustion. It is better to wait
until the memory become an issue than keep the two partition at the same size
during the whole visit — also because a class’ size can change, for instance if most
of its states will be visited close to the end of the verification.

Another issue is that, even when the memory is abundant, the two nodes
have to communicate intensively since the beginning, because the states have
been divided as equally as possible before starting. One possible optimization
would be to store all the states — at least initially — on the same node and
let the reassignment and the dynamic algorithm do the work of obtaining a
better partitioning. This last approach leaves all but one node completely useless
from the beginning up to the time the first node exhausts its memory resources
and starts splitting the state space — and the work — with the others. One
disadvantage is that a lot of work might need to be redone, because every time
a class is reassigned a part of the state space that has already been visited is
lost. Table 6 show the results of doing this form of dynamic partitioning — the
fairness of the partitioning is still very good, but now the messages and hence
the time is much reduced.

One possible way to avoid having idle workstations is to assign to each node
a set of states that belong to it, but let them, at the beginning, visit and store
also other states. This way all nodes will start visiting the state space at the
same time without any need to send messages, because states can be stored in
their own hash table. When memory becomes an issue, those states that belong
to others can be discarded to make space for local states, but after that messages
needs to be sent for those nodes falling in that part of the state space. At first
this technique seems very similar to sibling storing but the difference is that
states are stored without sending a message. In fact if the successors of a given

RemoteAgent Memory |[Messages %|Time (sec)
Global Hash Code 47/53 16 251.74
Local Hash Code 47/54 13 150.09
Local Hash Code (1) 45/55 5 97.57
Local Hash Code (2) 53/47 7 125.09
Program Counter (1) | 45/55 11 141.38
Program Counter (2) | 44/56 11 134.14
Program Counters (1)| 39/61 10 145.38
Program Counters (2)| 48/52 14 182.00

Table 6. Results from having one node start with all the classes.

state are fully visited by one node, the search will be correct even if later on this
state will be discarded.

To clarify this technique let’s suppose we have only two nodes. Initially both
the workstations start the visit until they reach a moment in time when memory
becomes scarce. At this point each node will have to discard a part of the state
space. Let’s assume for simplicity that only two classes were defined: each node
will keep one of them and reject the other. With a minimum amount of coordi-
nation — to avoid that both reject the same class — both nodes now have only
one class stored in their hash table. If we suppose for simplicity again that both
nodes got to the exact same point in the visit when they decided to reassign one
of their classes, no state would be lost, because each node is keeping what the
other rejected — see Figure 7.

Node o‘ ‘ Node 1

Reassignment

Node O@ @ Node 1

Fig. 7. How states are visited and discarded

This was a simplification: in a more realistic scenario there would be a number
of states that are lost, but surely quite limited compared to the same situation
where only one node had been running until the first reassignment started. More-

over if more classes than partitions exist the same dynamic techniques applied
before can be used. At any time each class can be either stored by a specific
node or shared among a set of them. When memory is scarce a shared class can
be discarded — making sure ahead of time that not everybody else discard it at
the same time — or a non-shared class can be transfered to another node. Table 7
shows results from this form of dynamic partitioning — note how the messages
and time is even further reduced from Table 6.

RemoteAgent Memory %|Messages %|Time (sec)
Global Hash Code 50/50 9 251.17
Local Hash Code 48/52 7 120.92
Local Hash Code (1) 52/48 3 74.46
Local Hash Code (2) 48/52 2 80.65
Program Counter (1) 38/62 4 113.21
Program Counter (2) 49/51 4 122.66
Program Counters (1)| 48/52 5 112.46
Program Counters (2)| 52/48 3 113.84

Table 7. Results from having two nodes start together.

4 Conclusions

Program model checking is an area of active research since the importance of
software and its failures is increasing. Model checking of software presents spe-
cific issues that are due to the complexity and the dynamic nature of programs.
Translation-based approaches cannot adequately deal with these since they rely
on underlying tools that are not designed to exploit programs specific character-
istics. We developed our own model checking tool using a programming language,
Java, as our input notation in order to be able to overcome this limitation.

We first introduced a representation for the state that respects the paradigm
underlying the input notation. In order to be able to explore the state space
of a reasonable size we developed a compression algorithm that exploits the
structure of the system state. A novel approach to efficient backtracking has
been presented, that reconstructs the state from the compressed version present
on the stack. A novel approach to symmetry has been introduced, that exploits
symmetries inherent to the state representation. Garbage collection is discussed
as a further way to reduce the state space.

Even after applying state space reduction techniques programs are often still
too large for the memory of a single workstation: a distributed memory algo-
rithm can overcome this. We show how an existing distributed model checking
algorithm can be extended to reduce communication overhead and do dynamic
memory balancing. We show results supporting our claim that dynamic parti-

tioning of the state space over multiple workstations is well suited to analyzing
dynamic (Java) programs.

This paper focussed on techniques that can be applied without any prior
knowledge of system structure. We do however believe that many reduction
techniques based on a-priori static analysis of the system, such as slicing, partial
order reductions, abstractions, etc., can improve the model checking process and
should be applied whenever possible.

In the future, we intend to further investigate the combination of static and
dynamic reduction techniques to combat the state explosion. Furthermore, we
believe that parallel model checking will become more popular in the future
due to the use of such machines becoming more widespread. To this end we are
currently extending our distributed model checking algorithm to be used on a
parallel shared-memory architecture (SGI Origin 2000).

References

[BBS00] J. Barnat, L. Brim, and J. Stribrna. Distributed LTL model-checking in
SPIN. Technical Report FIMU-RS-2000-10, Faculty of Informatics, Masaryk
University, 2000.

[BDH00] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric SPIN. In Proc. of the
Tth International SPIN Workshop, volume 1885 of LNCS. Springer-Verlag,
September 2000.

[BKR98] Nick Benton, Andrew Kennedy, and George Russell. Compiling standard
ML to Java bytecodes. SIGPLAN Notices, 34(1):129-140, September 1998.

[BLPV95] J. Bormann, J. Lohse, M. Payer, and G. Venzl. Model checking in industrial
hardware design. In Proc. of the 82nd Design Automation Conference, 1995.

[BRO0] Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker
for boolean programs. In Proc. of the 7Tth International SPIN Workshop,
volume 1885 of LNCS, pages 113-130. Springer-Verlag, September 2000.

[CD98] L.R. Clausen and O. Danvy. Compiling proper tail recursion and first-class
continuations: Scheme on the Java Virtual Machine. The Journal of C
Language Translation, 6(1):20-32, April 1998.

[CDH'00] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, and R. Zheng.
Bandera: Extracting finite-state models from Java source code. In Proc. of
the 22nd International Conference on Software Engineering, June 2000.

[CEJS98] Edmund M. Clarke, E. Allen Emerson, Somesh Jha, and A. Prasad Sistla.
Symmetry reductions in model checking. In Proc. of the 10th International
Conference on Computer Aided Verification, volume 1427 of LNCS, pages
147-158. Springer-Verlag, 1998.

[CFJ93] Edmund M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetries in tem-
poral logic model checking. In Proc. of the 5th International Conference on
Computer Aided Verification, volume 697 of LNCS. Springer-Verlag, 1993.

[CW96] Edmund M. Clarke and J. M. Wing. Formal methods: State of the art
and future directions. Technical Report CMU-CS-96-178, Carnegie Mellon
University, 1996.

[DIS99] Claudio Demartini, Radu Iosif, and Riccardo Sisto. A deadlock detection
tool for concurrent Java programs. Software - Practice and Ezperience,
29(7):577-603, 1999.

[EJ93]

[God9T7]

[Hol91]

[Hol97a]

[Hol97b]

[Hol00]

[HP9g]

[TD96]

[1S99]

[1S00]

[Ler00]

[LS99]

[SD97]

[Spa00]

[Sto00]

[Taf96]

E. Emerson and C. Jutla. Symmetry and model checking. In Proc. 5th
International Conference on Computer Aided Verification, volume 697 of
LNCS. Springer-Verlag, 1993.

Patrice Godefroid. VeriSoft: A tool for the automatic analysis of concurrent
reactive software. In Proc of the 9th International Conference on Computer
Aided Verification, volume 1254 of LNCS, pages 476-479. Springer-Verlag,
June 1997.

Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1991.

Gerard J. Holzmann. The SPIN model checker. IEEE Transactions on
Software Engineering, 23(5):279-295, May 1997.

Gerard J. Holzmann. State compression in SPIN: Recursive indexing and
compression training runs. In Proc. of the 3th International SPIN Workshop,
April 1997.

Gerard J. Holzmann. Logic verification of ANSI-C code with SPIN. In Proc.
of the Tth International SPIN Workshop, volume 1885 of LNCS. Springer-
Verlag, September 2000.

Klaus Havelund and Thomas Pressburger. Model checking Java programs
using Java PathFinder. International Journal on Software Tools for Tech-
nology Transfer, 2(4), April 1998.

C. Norris Ip and David L. Dill. Better verification through symmetry. Formal
Methods in System Design, 9(1/2):47-75, August 1996.

Radu Iosif and Riccardo Sisto. dSPIN: A dynamic extension of SPIN. In
Proc. of the 6th International SPIN Workshop, volume 1680 of LNCS, pages
261-276. Springer-Verlag, September 1999.

Radu Iosif and Riccardo Sisto. Using garbage collection in model checking.
In Proc. of the 7th International SPIN Workshop, volume 1885 of LNCS,
pages 20-33. Springer-Verlag, September 2000.

Flavio Lerda. Model checking: Tecniche di verifica formale in ambiente
distributo. Master’s thesis, Politecnico di Torino, May 2000.

Flavio Lerda and Riccardo Sisto. Distributed-memory model checking with
SPIN. In Proc. of the 5th International SPIN Workshop, volume 1680 of
LNCS. Springer-Verlag, 1999.

Ulrich Stern and David L. Dill. Parallelizing the Murphi verifier. In Proc. of
the 9th International Conference on Computer Aided Verification, volume
1254 of LNCS, pages 256—278. Springer-Verlag, June 1997.

SpaceViews. Premature engine cutoff likely cause of Mars Polar Lander
failure. http://www.spaceviews.com/2000/03/28b.html, March 2000.

Scott D. Stoller. Model-checking multi-threaded distributed Java programs.
In Proc. of the 7th International SPIN Workshop, volume 1885 of LNCS,
pages 224-244. Springer-Verlag, September 2000.

S. Tucker Taft. Programming the Internet in Ada 95. In Ada-Europe In-
ternational Conference on Reliable Software Technologies, volume 1088 of
LNCS, pages 1-16. Springer-Verlag, June 1996.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume Brat, and Seung-Joon Park.

Model checking programs. In Proc. of the 15th IEEE International Confer-
ence on Automated Software Engineering, September 2000.

